REGULAR STRUCTURAL PAPERS

Data collection

Syntex $P2_1$ diffractometer $\theta/2\theta$ scans Absorption correction: none 2105 measured reflections 1962 independent reflections 1444 observed reflections $[I > 2\sigma(I)]$	$\begin{aligned} R_{\text{int}} &= 0.025\\ \theta_{\text{max}} &= 27.5^{\circ}\\ h &= 0 \rightarrow 6\\ k &= 0 \rightarrow 13\\ l &= -21 \rightarrow 21\\ 2 \text{ standard reflections}\\ \text{frequency: } 120 \text{ min}\\ \text{intensity variation: } 5\% \end{aligned}$
Refinement	,

Rennement on F	$(\Delta/\sigma)_{\rm max} = 0.13$
Final $R = 0.041$	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.059	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.36	Extinction correction: none
1444 reflections	Atomic scattering factors
294 parameters	from International Tables
All H-atom parameters re-	for X-ray Crystallography
fined	(1974, Vol. IV)
$w = 1/[\sigma^2(F) + 0.0009 F ^2]$	

Table 1. Fractional atomic coordinates and equivalentisotropic thermal parameters (Å²)

 $B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у		z	B_{eq}
Cu(1)	0.1039 (1)	-0.2480) (1)	0.2161 (1)	2.83 (1)
O(1)	-0.1780 (5)	-0.2785	(2)	0.1362 (1)	3.60 (7)
O(2)	0.4143 (4)	-0.2266	i (3)	0.2907 (1)	3.81 (7)
O(3)	0.7881 (5)	-0.1196	(3)	0.3038 (2)	4.16 (7)
N(1)	0.2356 (5)	-0.0998	3 (3)	0.1616 (2)	2.81 (7)
N(2)	0.0420 (6)	-0.4207	(3)	0.2669 (2)	3.31 (7)
N(3)	0.2020 (6)	-0.4724	(4)	0.3278 (2)	3.85 (8)
C(1)	-0.2141 (6)	-0.2190) (3)	0.0655 (2)	2.90 (9)
C(2)	-0.0533 (7)	-0.1147	(4)	0.0397 (2)	3.24 (9)
C(3)	-0.1013 (8)	-0.0618	(5)	-0.0396 (2)	3.98 (11)
C(4)	-0.3071 (8)	-0.1062	(5)	-0.0910(2)	4.19 (10)
C(5)	-0.4691 (7)	-0.2047	(5)	-0.0648 (2)	4.30 (12)
C(6)	0.4283 (6)	-0.2600	(5)	0.0123 (2)	3.96 (9)
C(7)	0.1601 (7)	-0.0604	(4)	0.0903 (2)	3.16 (9)
C(8)	0.4583 (7)	-0.0361	(4)	0.2079 (2)	3.12 (9)
C(9)	0.3637 (9)	0.0894	(5)	0.2497 (3)	4.64 (12)
C(10)	0.5647 (6)	-0.1338	(4)	0.2723 (2)	3.18 (9)
C(11)	0.1248 (8)	-0.5913	(5)	0.3479 (3)	4.95 (13)
C(12)	-0.0967 (11) -0.6207	(6)	0.2980 (3)	6.22 (16)
C(13)	-0.1411 (9)	-0.5094	(5)	0.2485 (3)	4.96 (13)
N(4)	0.8051 (6)	-0.3064	(4)	0.4377 (2)	4.58 (8)
N(5)	0.6095 (7)	-0.3922	(5)	0.4469 (2)	5.82 (13)
C(14)	0.6904 (10) -0.4582	(7)	0.5134 (3)	6.25 (16)
C(15)	0.9322 (9)	-0.4226	(6)	0.5437 (3)	5.42 (14)
C(16)	1.0072 (10) -0.3225	(6)	0.4961 (3)	5.16 (12)
Table 2. Selected geometric parameters (Å, °)					
Cu(1)—C	0(1)	1.890 (2)	C(7)-N	N(1)	1 267 (5)
Cu(1)—C		1.932 (2)	C(10)-	$\dot{O}(2)$	1.261 (5)
Cu(1) - N	i di	1.890 (3)	C(10) -	O(3)	1 220 (4)
Cu(1)—N	(2)	1.964 (3)	-()		1.220 (4)
0(1)—Cu	(1) - N(1)	94.5 (1)	N(1)0	Cu(1)—O(2)	84.8 (1)
O(1)—Cu	(1)—O(2)	174.2 (1)	N(1)—0	Cu(1) - N(2)	167.0 (1)
O(1)—Cu	n(1)—N(2)	90.7 (1)	0(2)—0	Cu(1)—N(2)	88.9 (1)
Cu—O(1)	-C(1)-C(2)	-4.2 (5)	N(1)-0	Cu - O(1) - C(1)	8.2 (3
O(1)—C(1)-C(2)-C(7)	-2.6 (5)	C(7)—N	H(1) - C(8) - H(8)) - 39.9 (3

C(1) = C(2) = C(7) = C(7) = C(2) = C(7) =	$\begin{array}{ccc} R(1) & 2.2 (8) \\ Cu & 5.0 (5) \\ r(1) & -8.6 (3) \end{array}$	N(1)—C	C(8) - C(10)	(9) 83.3 (4) D(2) 19.8 (4)
<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N(3) - H \cdot \cdot \cdot N(5)$	0.95 (5)	2.14 (6)	2.850 (5)	131 (5)
$N(3) = H \cdot \cdot \cdot O(2)$	0.95 (5)	2.47 (7)	2.785 (5)	99 (4)
$N(4) - H \cdot \cdot \cdot O(3)$	0.93 (5)	1.96 (5)	2.890 (5)	174 (4)

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved All calculations were performed with a local version of the NRC program system (*NRC Crystallographic Programs for the IBM360 System*, 1973).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, least-squares-planes data and all bond lengths have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71245 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU1037]

References

- Berthou, J., Elguero, J. & Rérat, C. (1970). Acta Cryst. B26, 1880-1881.
- Bkouche-Waksman, I., Barbe, J. M. & Kvick, Å. (1988). Acta Cryst. B44, 595-601.
- Burke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216-3224.
- Dunathan, H. C. (1966). Proc. Natl Acad. Sci. USA, 55, 712–716.
 Gillard, R. D. & Wootton, R. (1970). J. Chem. Soc. B, pp. 364–371.
- Guirard, B. M. & Snell, E. E. (1964). Comprehensive Biochemistry, Vol. 15, edited by M. Florkin & E. H. Stotz, pp. 138–199. Amsterdam: Elsevier.
- Kettmann, V., Krätsmár-Šmogrovič, J. & Švajlenová, O. (1990). Acta Cryst. C46, 1119–1121.
- Krätsmár-Šmogrovič, J., Bláhová, M. & Kettmann, V. (1991). Chirality, 3, 503–505.
- Metzler, D. E., Ikawa, M. & Snell, E. E. (1954). J. Am. Chem. Soc. 76, 648-652.
- Mighell, A., Santoro, A., Prince, E. & Reimann, C. (1975). Acta Cryst. B31, 2479-2482.
- NRC Crystallographic Programs for the IBM360 System (1973). Accession Nos. 133-147. J. Appl. Cryst. 6, 309-346.

Acta Cryst. (1993). C49, 1934–1936

Structure of the Ethylidene Cluster Os₃(μ -H)₂(μ -CHCH₃)(CO)₉(P^{*i*}Pr₃)

LOUIS J. FARRUGIA*

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

(Received 16 October 1992; accepted February 1993)

Abstract

The title complex, nonacarbonyl- $1\kappa^3 C.2\kappa^3 C.3\kappa^3 C.$ μ -ethylidene- $2:3\kappa^2 C$ -di- μ -hydrido- $1:2\kappa^2 H;2:3\kappa^2 H$ triisopropylphosphine- $1\kappa P$ -triangulo-triosmium-(3 Os—Os), contains an irregular Os₃ triangle [Os—Os = 3.088 (1)–2.797 (1) Å], with an ethylidene

[Os-Os = 3.088 (1)-2.797 (1) Å], with an ethylidene and one hydrido ligand bridging two Os atoms, and a P'Pr₃ ligand coordinated in an equatorial position to the third Os atom. A second bridging hydride is

> Acta Crystallographica Section C ISSN 0108-2701 ©1993

coordinated cis to the phosphine ligand. The locations proposed for the two hydrides are based on NMR evidence and potential-energy calculations.

Comment

The related methylene cluster $Os_3(\mu-H)_2(\mu-CH_2)$ -(CO)₁₀ has been characterized by single-crystal neutron diffraction (Schultz, Williams, Calvert, Shapley & Stucky, 1979), and has a very similar structure to the title complex, but with slightly different Os—Os distances [Os—Os = 3.053 (3)-2.824 (3) Å].The unsubstituted derivative $Os_3(\mu-H)_2(\mu-CHCH_3)$ -(CO)₁₀ has been spectroscopically characterized (Cree-Uchiyama, Shapley & St Georges, 1986) and the ¹H NMR parameters are very similar to those of the title complex. $Os_3(\mu-H)_2(\mu-CHCH_3)(CO)_{10}$ exists in tautomeric equilibrium with the agonistic $Os_3(\mu - H)(\mu - C_2H_5)(CO)_{10}$ (Creeethyl complex Uchiyama et al., 1986). In a similar fashion, Os₃- $(\mu-H)_2(\mu-CH_2)(CO)_{10}$ exists in tautomatic equilibrium with the agonistic methyl complex $Os_3(\mu-H)$ - $(\mu$ -CH₃)(CO)₁₀ (Calvert & Shapley, 1977, 1978). In contrast, the NMR evidence indicates that the title cluster exists solely as the stable ethylidene tautomer. This may be a result of the relatively greater electron density in the title cluster favouring the better π acid μ -CHCH₃.

Fig. 1. Molecular structure and atomic labelling scheme for $Os_3(\mu-H)_2(\mu-CHCH_3)(CO)_9(P'Pr_3)$. Thermal ellipsoids are shown at the 20% probability level; two H atoms are shown as spheres of arbitary size; other H atoms are omitted for clarity.

Experimental

Crystal data

$[Os_3(H)_2(C_2H_4)(C_9H_{21}P)-$	Mo $K\alpha$ radiation
[e(OO)]	$\lambda = 0.71069 \text{ Å}$
$M_r = 1013.0$	Cell parameters from 25
Monoclinic	reflections
$P2_1/n$	$\theta = 12 - 14^{\circ}$
a = 9.165 (2) Å	$\mu = 14.00 \text{ mm}^{-1}$
h = 19473(4) Å	T = 298 K
c = 15482 (4) Å	Prism
$\beta = 97.51 (2)^{\circ}$	$0.7\times0.35\times0.3$ mm

V = 2739 (1) Å³ Z = 4 $D_{\rm r} = 2.46 {\rm Mg} {\rm m}^{-3}$

Data collection

Enraf-Nonius CAD-4	$R_{\rm int} = 0.023$
diffractometer	$\theta_{\rm max} = 25^{\circ}$
$\theta/2\theta$ scans	$h = 0 \rightarrow 10$
Absorption correction:	$k = 0 \rightarrow 23$
by DIFABS (Walker &	$l = -16 \rightarrow 16$
Stuart, 1983)	2 standard reflections
$T_{\min} = 0.73, T_{\max} = 1.32$	(309, 248)
5310 measured reflections	frequency: 120 mir
4816 independent reflections	intensity variation:
2854 observed reflections	over 74 h data c
$[I > 2.5\sigma(I)]$	tion

Refinement

Refinement on F	$w = [\sigma^2(F_o)]^{-1}$
Final $R = 0.032$	$(\Delta/\sigma)_{\rm max} = 0.01$
wR = 0.035	$\Delta \rho_{\rm max}$ = 1.06 e Å ⁻³
S = 1.49	$\Delta \rho_{\rm min}$ = -1.17 e Å ⁻³
2854 reflections	Atomic scattering factors
298 parameters	from International Tables
H-atom parameters not re-	for X-ray Crystallography
fined	(1974, Vol. IV)

Yellow

Crystal source: hexane

intensity variation: 10%

over 74 h data collec-

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$)

 $U_{\rm iso}$ for H atoms; $U_{\rm eq} = \frac{1}{2} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$ for other atoms.

	x	v	z	$U_{\rm iso}/U_{\rm eq}$
Os(1)	0.86651 (7)	0.13641 (3)	0.66809 (3)	0.046
Os(2)	1.08570 (6)	0.24018 (3)	0.76385 (3)	0.048
Os(3)	0.96738 (6)	0.25791 (3)	0.58938 (3)	0.045
P	0.8057 (4)	0.0366 (2)	0.7454 (2)	0.052
O(1)	0.6510(15)	0,1223 (6)	0.5025 (7)	0.113
O(2)	1.0958 (15)	0.0564 (6)	0.5789 (8)	0.118
O(3)	0.6484 (12)	0.2227 (5)	0.7558 (8)	0.086
O(4)	0.9004 (14)	0.2690 (6)	0.9125 (6)	0.088
0(5)	1.2417 (15)	0.3767 (6)	0.7989 (8)	0.104
0(6)	1.3405 (13)	0.1592 (6)	0.8575 (6)	0.093
0(7)	1.0891 (15)	0.3913 (6)	0.5268 (8)	0.105
O(8)	1.0055 (14)	0.1832 (6)	0.4228 (6)	0.099
O(9)	0.6491 (12)	0.3071 (6)	0.5426(7)	0.085
C(1)	0.7278 (18)	0.1279 (8)	0.5664 (10)	0.078
C(2)	1.0092 (19)	0.0873 (8)	0.6135 (8)	0.071
C(3)	0.7351 (17)	0.1901 (7)	0.7242 (8)	0.056
C(4)	0.9632 (17)	0.2569 (7)	0.8562 (8)	0.058
C(5)	1.1840 (18)	0.3227 (9)	0.7881 (9)	0.074
C(6)	1.2395 (18)	0.1904 (8)	0.8254 (8)	0.065
C(7)	1.0455 (17)	0.3408 (9)	0.5511 (8)	0.069
C(8)	0.9898 (18)	0.2095 (8)	0.4852 (8)	0.065
C(9)	0.7690 (16)	0.2882 (7)	0.5607 (7)	0.051
C(10)	1.1834 (15)	0.2203 (8)	0.6468 (7)	0.061
C(11)	1.3191 (17)	0.2623 (10)	0.6309 (9)	0.088
C(111)	0.934 (3)	0.022 (1)	0.850 (1)	0.121
C(112)	1.088 (2)	0.006(1)	0.827 (1)	0.105
C(113)	0.911 (2)	0.077 (1)	0.917 (1)	0.103
C(121)	0.829 (2)	-0.043 (1)	0.690 (1)	0.111
C(122)	0.832 (3)	-0.109(1)	0.740 (1)	0.169
C(123)	0.713 (3)	-0.048 (1)	0.598 (1)	0.127
C(131)	0.628 (3)	0.041 (1)	0.786 (2)	0.141
C(132)	0.585 (3)	-0.012 (1)	0.847 (1)	0.151
C(133)	0.497 (2)	0.051 (1)	0.700 (2)	0.143
H (1)	1.00640	0.15270	0.76270	0.050
H(2)	0.94690	0.29420	0.69760	0.050

Table 2. Selected bond lengths (Å) and angles (°)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(1) - Os(2)	3.088 (1)	Os(1) - Os(3)	2.869 (1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(1)—P	2.386 (4)	Os(1) - C(1)	1.897 (16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(1) - C(2)	1.905 (16)	Os(1) - C(3)	1.890 (15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(1)H(1)	1.844 (1)	Os(2)-Os(3)	2.797 (1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(2)C(4)	1.957 (14)	Os(2)-C(5)	1.856 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os(2) - C(6)	1.867 (16)	Os(2) - C(10)	2.159 (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_{S}(2) - H(1)$	1.851 (1)	Os(2) - H(2)	1 854 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_{S}(3) - C(7)$	1 892 (16)	$O_{S}(3) - C(8)$	1 903 (14)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$O_{S}(3) - C(9)$	1 908 (15)	$O_{S}(3) = C(10)$	2 187 (14)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$O_{S}(3) = U(2)$	1.900 (13)	$P_{\rm L} C(111)$	1.00(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{1}(2)$	1.000 (1)	P = C(121)	1.90 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	r = C(121)	1.792 (17)	F=C(131)	1.82 (3)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Os(2) - Os(1) - Os(3)	55.9 (1)	Os(2) - Os(1) - P	118.2 (1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(2) - Os(1) - C(1)	141.2 (5)	Os(2) - Os(1) - C(2)	95.8 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(2) - Os(1) - C(3)	80.3 (5)	Os(2) - Os(1) - H(1)	33.4 (1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(3)—Os(1)—P	173.7 (1)	Os(3) - Os(1) - C(1)	86.5 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(3) - Os(1) - C(2)	87.0 (5)	Os(3) - Os(1) - C(3)	90.0 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os(3) - Os(1) - H(1)	88.1 (1)	P - Os(1) - C(1)	99.8 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P-Os(1)-C(2)	91.9 (5)	P - Os(1) - C(3)	90.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P - Os(1) - H(1)	85.7 (1)	C(1) - Os(1) - C(2)	90.7 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(1) - O_{s}(1) - C(3)$	91.8 (7)	C(1) - Os(1) - H(1)	174.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2) - Os(1) - C(3)	175.9 (7)	C(2) = Os(1) = H(1)	89.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) - Os(1) - H(1)	87.6 (5)	$O_{S}(1) - O_{S}(2) - O_{S}(3)$	58.1 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os(1) - Os(2) - C(4)	93.5 (5)	Os(1) - Os(2) - C(5)	158.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os(1) - Os(2) - C(6)	107.8 (5)	$O_{S}(1) - O_{S}(2) - C(10)$	78.2 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(1) - Os(2) - H(1)	33.2 (1)	$O_{s(1)} - O_{s(2)} - H(2)$	75.5 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os(3) - Os(2) - C(4)	119.9 (5)	Os(3) - Os(2) - C(5)	101.9 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(3) - Os(2) - C(6)	136.8 (4)	Os(3) - Os(2) - C(10)	50.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os(3) - Os(2) - H(1)	90.1 (1)	Os(3) - Os(2) - H(2)	40.9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - Os(2) - C(5)	910(7)	C(4) = Os(2) = C(6)	100.4 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - Os(2) - C(10)	169.6 (6)	C(4) = Os(2) = H(1)	84 2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - Os(2) - H(2)	838(4)	C(5) = Os(2) = C(6)	918(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) - Os(2) - C(10)	947(6)	C(5) = Os(2) = H(1)	167.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) = Os(2) = H(2)	843(5)	C(6) = O(2) = C(10)	88 1 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6) = Os(2) = H(1)	78 2 (5)	$C(6) = O_{3}(2) = C(10)$	174 4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) = Os(2) = H(1)	01.0 (5)	C(10) - C(2) - H(2)	88 1 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(1) = O(2) = H(2)	106.1 (1)	C(10) = Os(2) = I1(2)	66.0(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\Omega(1) = OS(2) = \Pi(2)$ $\Omega(1) = Oc(3) = C(7)$	100.1(1) 172.0(4)	$O_{S}(1) = O_{S}(3) = O_{S}(2)$	00.0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_{S}(1) = O_{S}(3) = C(7)$	173.0(4)	$O_{S}(1) = O_{S}(3) = C(3)$	91.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_{S}(1) = O_{S}(3) = C(9)$	90.2 (4)	$O_{S}(1) = O_{S}(3) = C(10)$	62.9 (4) 107.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_{S}(1) = O_{S}(3) = H(2)$	81.0(1)	$O_{S(2)} = O_{S(3)} = C(7)$	107.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$U_{S(2)} = U_{S(3)} = U_{(8)}$	133.3 (5)	$U_{s(2)} = U_{s(3)} = U_{(9)}$	120.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Os(2) = Os(3) = C(10)	49.5 (3)	Os(2) - Os(3) - H(2)	41.0(1)
$\begin{array}{ccccccc} C(7) - Os(3) - C(10) & 93.0 (7) & C(7) - Os(3) - H(2) & 92.6 (4) \\ C(8) - Os(3) - C(9) & 99.3 (6) & C(8) - Os(3) - C(10) & 89.2 (6) \\ C(8) - Os(3) - H(2) & 172.7 (5) & C(9) - Os(3) - C(10) & 169.2 (5) \\ C(9) - Os(3) - H(2) & 83.5 (4) & C(10) - Os(3) - H(2) & 87.3 (4) \\ \end{array}$	C(7) = Os(3) = C(8)	94.0 (6)	C(7) = Os(3) = C(9)	92.9 (7)
$\begin{array}{ccccc} C(8) - Os(3) - C(9) & 99.3 & (6) & C(8) - Os(3) - C(10) & 89.2 & (6) \\ C(8) - Os(3) - H(2) & 172.7 & (5) & C(9) - Os(3) - C(10) & 169.2 & (5) \\ C(9) - Os(3) - H(2) & 83.5 & (4) & C(10) - Os(3) - H(2) & 87.3 & (4) \\ \end{array}$	C(7) = Os(3) = C(10)	93.0 (7)	C(7) - Os(3) - H(2)	92.6 (4)
$\begin{array}{cccc} C(8) - Os(3) - H(2) & 172.7 \ (5) & C(9) - Os(3) - C(10) & 169.2 \ (5) \\ C(9) - Os(3) - H(2) & 83.5 \ (4) & C(10) - Os(3) - H(2) & 87.3 \ (4) \end{array}$	C(8) - Os(3) - C(9)	99.3 (6)	C(8) = Os(3) = C(10)	89.2 (6)
C(9) - Os(3) - H(2) 83.5 (4) $C(10) - Os(3) - H(2)$ 87.3 (4)	C(8) - Os(3) - H(2)	172.7 (5)	C(9) - Os(3) - C(10)	169.2 (5)
	C(9) - Os(3) - H(2)	83.5 (4)	C(10) - Os(3) - H(2)	87.3 (4)

The title complex was obtained in very low yield (0.5%) from the reaction between $Os_3(\mu-H)_2(CO)_9(P^iPr_3)$ and $Pt(PCy_3)-(C_2H_4)_2$, which was used to prepare $Os_3Pt(\mu-H)_2(CO)_9(Pt-PCy_3)(Os-P^iPr_3)$ (Farrugia & Rae, 1991). ¹H NMR data (CD₂Cl₂, 218 K), δ : 6.64 [q, 1H, CHCH₃, J(H-H) = 7.3 Hz], 2.45 [d, 3H, CHCH₃, J(H-H) = 7.3 Hz], 2.21 [septet, 3H, CHMe₂, J(H-H) = 7.1 Hz], 1.10 [dd, 18H, CH(CH₃)₂, J(H-H) = 7.1, J(P-H) = 14.9 Hz], -14.35 [s, 1H, Os(μ -H)Os], -20.96 p.p.m. [d, 1H, Os(μ -H)Os, J(P-H) = 9.7 Hz]. ³¹P{¹H} NMR data (CD₂Cl₂, 190 K), δ : 26.1 p.p.m. (s). No signals from an ethyl tautomer (Cree-Uchiyama *et al.*, 1986) were detected either immediately, or on standing for 12 h.

Systematic absences k = 2n + 1 in 0k0, h + l = 2n + 1 in h0l were observed for the data crystal. Data were corrected for decomposition and Lp effects.

The structure was solved by direct methods (*MITHRIL*; Gilmore, 1984), and subsequent full-matrix least-squares refinement included anisotropic thermal parameters for all non-H atoms. Aliphatic H atoms were included at calculated positions (C—H = 1.0 Å) for the methyl and isopropyl groups with fixed contributions to the structure factors. The methine H atom on the ethylidene group was not observed in difference maps and was not included. The metal hydride positions were determined using potential-energy minimization (*HYDEX*; Orpen, 1980) with Os—H = 1.85 Å. Calculations were carried out on a MicroVAX 3600 computer using the Glasgow *GX* suite of programs (Mallinson & Muir, 1985).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71126 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1037]

References

- Calvert, R. B. & Shapley, J. R. (1977). J. Am. Chem. Soc. 99, 5225-5226.
- Calvert, R. B. & Shapley, J. R. (1978). J. Am. Chem. Soc. 100, 7726-7727.
- Cree-Uchiyama, M., Shapley, J. R. & St George, G. M. (1986). J. Am. Chem. Soc. 108, 1316–1317.
- Farrugia, L. J. & Rae, S. E. (1991). Organometallics, 10, 3919-3927.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Mallinson, P. R. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
- Orpen, A. G. (1980). J. Chem. Soc. Dalton Trans. pp. 2509-2516.
- Schultz, A. J., Williams, J. M., Calvert, R. B., Shapley, J. R. & Stucky, G. D. (1979). Inorg. Chem. 18, 319–323.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1936-1939

Electrooxidation of the Redox Tertiary Phosphine 4-(Diphenylphosphino)-4',5,5'-trimethyltetrathiafulvalene (P_1) and the Structure of ($P_1O^{++})_2Mo_6Br_{14}^{2-}$

SILVIA JARCHOW,† MARC FOURMIGUÉ* AND PATRICK BATAIL

Laboratoire de Physique des Solides associé au CNRS, Université Paris-Sud, Bâtiment 510, F-91405 Orsay, France

(Received 15 December 1992; accepted 13 April 1993)

Abstract

Electrooxidation of the diphenyl(4',5,5'-trimethyl-1,1',3,3'-tetrathia-4-fulvalenyl)phosphine (hereafter P_1) in the presence of $({}^{n}Bu_4N^+)_2Mo_6Br_{14}^{2-}$ affords the cation radical salt diphenyl[4-(4',5,5'-trimethyl-1,1',3,3'-tetrathia-4-fulvalenyl)]phosphoniumyl oxide-hexamolybdenum tetradecabromide (2/1),

[†] Erasmus student on leave from the University of Hannover, Germany.